
HOMEWORK 11

Due date:

Exercises: 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.12, 9.18, page 506-509 of Artin’s book.
Also try 9.14 and 9.15. But you don’t have to submit your work on these two problems.

Problem 1. Let F be a field and f ∈ F [x] be a separable polynomial of degree n. Show that f is
irreducible iff Gf acts transitively on the roots of f .

Note that Gf acts transitively on the roots of f means that Gf is a transitive subgroup of Sn.
Let F be a field, f ∈ F [x] be a separable polynomial of degree 4 with roots α1, α2, α3, α4 in an

extension K. Consider

α = α1α2 + α3α4,

β = α1α3 + α2α4,

γ = α1α4 + α2α3.

Let Rf = (x− α)(x− β)(x− γ), which is called the resolvent cubic of f .

Problem 2. Let f = x4 + bx3 + cx2 + dx + e ∈ F [x] and let Rf be its resolvent cubic. Show that
disc(f) = disc(Rf ).

Hint: Use definitions.

Problem 3. If f = x4+bx3+cx2+dx+e ∈ F [x], show that Rf = x3−cx2+(bd−4e)x−b2e+4ce−d2.

Recall that a group G is called solvable if there exists a normal series

1 = Gn ⊴ Gn−1 ⊴ · · · ⊴ G1 ⊴ G0 = G

such that Gi/Gi+1 is abelian for each i.

Problem 4. Let G be a finite group. Show that G is solvable iff there exists a normal series

1 = Gn ⊴ Gn−1 ⊴ · · · ⊴ G1 ⊴ G0 = G

such that Gi/Gi+1 is cyclic for each i.

Let p be a prime integer. Recall that a finite group is called solvable if |G| = pe for some positive
integer e.

Problem 5. Show that any p-group is solvable.

Hint: This is essentially Proposition 7.3.1, page 197 of Artin’s book.
A famous theorem of Burnside says that if |G| = paqb for p, q prime and a, b ∈ N, then G is

solvable. Its proof is much harder.

Problem 6. Let F be a field and let Bn be the upper triangular subgroup of GLn(F ). Show that Bn

is solvable.

Many matrices groups, like GLn(F ),SLn(F ),SOn(F )(n ≥ 3),Sp2n(F ) are not solvable. See
Theorem 9.8.4, page 282 of Artin’s book. As an example, let G = GL2(F ) or SL2(F ), try to
compute the derived normal series G(k), where G(1) = [G,G] and G(k) = [G(k−1), G(k−1)] for k ≥ 2.

Given a group G, define D1G = [G,G] = G(1), D2G = [G,D1G], . . . , DkG = [G,Dk−1G]. Then
we have the normal series

DkG ⊴ Dk−1G ⊴ · · · ⊴ D1G ⊴ G.

This series is called the lower central series of G. Notice that G(k) ⊊ DkG in general. A group G is
called nilpotent if DkG = {1}. Notice that if G is nilpotent, it must be solvable. The converse is
false.
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Problem 7. Let F be a field and let Bn be the upper triangular subgroup of GLn(F ). Let Un ⊂ Bn

be the subgroup with elements 1 in the diagonal. Show that Bn is not nilpotent but Un is nilpotent.

1. Discriminant of a special polynomial

Given f =
∏
(x − αi). Recall that disc(f) =

∏
i̸=j(αi − αj)

2. Assume that K is a field of
characteristic zero.

Problem 8. Suppose L = K(β) for some β and let f := µβ be the minimal polynomial of β over
K. Show that

disc(f) = (−1)
m(m−1)

2 NmL/K(f ′(β)).

Here m = deg(f).

You might use the Norm formula in Problem 8, HW9.
Assume characteristic of K is zero. Consider the polynomial f = xn + ax+ b ∈ K[x]. We assume

that f is irreducible. By last problem, we have

disc(f) = NmL/K(f ′(β)),

where β is a root of f and L = K(β). Denote γ = f ′(β) = nβn−1 + a. To get NmK(β)/K(γ), it is
better to find its minimal polynomial.

Problem 9. (1) Show that

β =
−nb

γ + (n− 1)a

and conclude that the minimal polynomial has degree n.
(2) Show that the minimal polynomial of γ is

(x+ (n− 1)a)n − na(x+ (n− 1)a)n−1 + (−1)nbn−1.

(3) Show that disc(f) = (−1)
n(n−1)

2

(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
.

Some special cases: disc(x3+px+x) = −4p3−27q3, and disc(x4+px+q) = −27p4+256q3. Note
that discriminant can be defined for any polynomial (irreducible or not). But the above calculation
requires f is irreducible because Problem 8 required so. Actually, the same formula holds even it is
reducible.
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